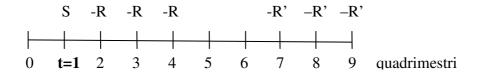
MATEMATICA FINANZIARIA 1

PROVA SCRITTA DEL 17 LUGLIO 2007

ECONOMIA AZIENDALE/ECONOMIA/ECONOMIA E COMMERCIO


(Cognome	Nome	Matricola
•	20 S110111 0		

ESERCIZIO 1

- a) Il Sig. Rossi contrae in <u>t=1</u> quadrimestre un prestito S di 20.000 euro che verrà rimborsato, a partire da t=1 quadrimestre, con
 - 3 rate quadrimestrali costanti posticipate R = 2.500 Euro per il primo anno;
 - 3 rate quadrimestrali costanti posticipate R' a partire da t=2 anni.

Utilizzando un tasso di valutazione annuo del 5%, determinare il valore della rata R'.

Svolgimento

Trasformiamo il tasso annuo in un tasso quadrimestrale:

$$(1+i_1) = (1+i_3)^3$$
 da cui $i_3 = (1+i_1)^{\frac{1}{3}} - 1 = 1,05^{\frac{1}{3}} - 1 = 0,0164 \rightarrow 1,64\%$ quadrimestrale.

Per l'equità dell'operazione finanziaria deve valere in t = 1:

$$S = Ra_{3;i3} + R'a_{3;i3} (1+i_3)^{-5}$$
.

Quindi

$$20000 = 2500 \frac{1 - 1,0164^{-3}}{0,0164} + R' \frac{1 - 1,0164^{-3}}{0,0164} 1,0164^{-5};$$

$$20000 = 7.260,61 + R' \cdot 2,6774283$$

Otteniamo un'equazione di I grado in R', dalla quale si ricava:

$$R' = \frac{20000 - 7260,61}{2,6774283} = 4758,07 \in .$$

- b) Il signor Bianchi deve valutare in t=0 la scelta tra due investimenti alternativi in base al criterio del TIR:
 - Investimento A: TCN con Prezzo in t=0 pari a Euro 1.000 e valore facciale pari a Euro 1.100 e scadenza a 2 anni;
 - Investimento **B**: TCF con Prezzo pari a 21.000, con valore facciale C=17.500 Euro, Cedole semestrali, Tasso cedolare del 3%, scadenza in 2 anni.

Indicare l'operazione di investimento più conveniente spiegandone la motivazione. Qualora per una o per entrambe le operazioni finanziarie il TIR non possa essere determinato, descrivere dettagliatamente il motivo della non esistenza del TIR.

Svolgimento

Operazione A - TCN

$$P = 1.000$$

 $C = 1.100$
 $n = 2$ anni

$$i_A^* = \frac{1}{\sqrt[n]{\frac{P}{C}}} - 1 = 4,88\%$$
 annuo

Operazione B – TCF

Il TIR non esiste. Infatti le cedole semestrali sono pari a:

$$I = C * i_{cedolare} = 17500 * 0.03 = 525$$

Essendo la scadenza a 4 anni, avremo:

$$P > C + 4 * I \rightarrow 21.000 > 17.500 + 4 * 525 \rightarrow 21.000 > 19.600$$

e quindi il TIR non esiste.

ESERCIZIO 2

Il signor Bianchi acquista al prezzo di 500 euro un TCF con cedola semestrale, tasso nominale annuo del 3%, durata 2 anni per un valore nominale complessivo di 540 Euro.

a) Determinare il tasso interno di rendimento del TCF.

Svolgimento

Dato che il titolo paga cedole semestrali, il numero di pagamenti in un anno è pari a 2 e si ottiene:

Tasso Cedolare = Tasso Nominale Annuo / 2 = 3% / 2 = 1.5%.

Si ricava una cedola I uguale a: 0.015 * 540 = 8.1 Euro.

Il TIR esiste ed è unico perché sussiste una variazione di segno e C + 4 * I > P.

L'equazione del TIR è tale che:

$$I \frac{v(1 - v^4)}{1 - v} + Cv^4 = P$$

Risolviamo quest'equazione tramite il metodo delle corde e poniamo $f(v) = I \frac{v(1-v^4)}{1-v} + Cv^4$.

Fissiamo un livello massimo di errore ε =0,0001.

La soluzione cercata v* è l'ascissa del punto d'intersezione della funzione f(v) con la retta P=500.

Scegliamo v_1 =0,96 a cui corrisponde $f(v_1)$ = 487,9 minore di P, e v_m =0,97 a cui corrisponde $f(v_m)$ = 508,1 maggiore di P.

La retta passante per $(v_1,f(v_1))$ e $(v_m,f(v_m))$ è:

$$\frac{y - f(v_1)}{f(v_m) - f(v_1)} = \frac{v - v_1}{v_m - v_1}.$$

Imponiamo che tale retta intersechi la retta P= 500:

$$\frac{P - f(v_1)}{f(v_m) - f(v_1)} = \frac{v_2 - v_1}{v_m - v_1};$$

Da cui si ricava:

$$v_2 = v_1 + (v_m - v_1) \frac{P - f(v_1)}{f(v_m) - f(v_1)} = 0.966$$

 $f(v_2+\varepsilon)=500,1>P$. Allora considerando v_2 come soluzione accettabile commettiamo un errore minore di ε . In generale si itera questo procedimento n volte fino a che $\left|v_n-v^*\right|\leq \varepsilon$, ovvero $f(v_n+\varepsilon)>P$.

II TIR è quindi:
$$i_2^* = \frac{1}{v_2} - 1 = 0,0352 \rightarrow 3,52\%$$
 semestrale.

b) Assumendo come tasso di valutazione il tasso interno determinato al punto precedente, calcolare le quote del TCF di cui al punto a) affinché acquistando tali quote del TCF e due TCN con scadenza 3 anni e valore nominale 450 euro si abbia un portafoglio Z con prezzo in t=0 pari a 1500 euro.

Svolgimento

 $i_2 = 3,52\%$ semestrale

TCN

C = 450

Scadenza = 3 anni = 6 semestri

$$P(0;TCN) = C * (1+i_2)^{-6} = 365,62$$

E' necessario quindi risolvere l'equazione di primo grado nell'incognita α:

$$\alpha P(0;TCF) + \beta P(0;TCN) = P(0;Z).$$

Sostituendo i valori avremo:

$$\alpha * 500 + 2 * 365,52 = 1.500.$$

da cui si ricava

$$\alpha = \frac{1.500 - 2 \cdot 365,52}{500} = 1,54$$

c) Impostare il piano di preammortamento (ammortamento a rimborso unico) che caratterizza il TCF di cui al punto a), per l'intera durata (2 anni), qualora il TCF fosse stato quotato alla pari, con un valore facciale C pari a 500 Euro.

Svolgimento

In questo caso, essendo C = 500 euro, è necessario ricalcolare la cedola. Dato che il titolo paga cedole semestrali, il numero di pagamenti in un anno è pari a 2 e si ottiene:

TIR = Tasso Nominale Annuo / 3 = 3% / 2 = 1,5%.

Si ricava una cedola I uguale a: 0.015 * 500 = 7.5 Euro.

A questo punto è possibile impostare il piano di preammortamento del TCF:

k	QI	QC	R	DR
0				500
1	7,5	0	7,5	500
2	7,5	0	7,5	500
3	7,5	0	7,5	500
4	7,5	500	507,5	0