MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 15 APRILE 2008 ECONOMIA AZIENDALE

ESERCIZIO 1

1.1 A partire da 7 anni fa un individuo ha investito all'inizio di ogni mese il 50% del proprio stipendio in un fondo di investimento rivalutato al tasso annuale del 4%.

Sapendo che lo stipendio dell'individuo è pari a 1.400 Euro e che gli viene corrisposto mensilmente in modo anticipato, determinare la somma accumulata nel fondo dopo i 7 anni.

Importo investito mensilmente: 0.50*1400 = 700 euro

7 anni \rightarrow 84 mesi

Poiché le rate sono mensili, rendiamo il tutto omogeneo dal punto di vista temporale trasformando il tasso da annuale in mensile secondo la regola dei tassi equivalenti:

$$i_{1/12} = (1+i)^{\frac{1}{12}} - 1 = (1+0.04)^{\frac{1}{12}} - 1 = 0.0033$$

Calcoliamo il valore accumulato in 7 anni nel modo seguente:

$$700 \cdot \frac{1 - (1 + 0.0033)^{-84}}{0.0033} \cdot (1 + 0.0033) \cdot (1 + 0.04)^{7} = 67774.55$$

$$Rappresenta il valore attuale Capitalizziamo il tutto al tempo zero per 7 anni (ovviamente di una rendita anticipata al tasso annuale)$$

1.2 Oggi l'individuo ha la possibilità di accedere ad un mutuo finanziato ad un tasso annuo del 4,5% per l'acquisto di una casa, il cui costo è pari a 105.000 Euro. Tale individuo decide di versare come anticipo 1'80% della somma accumulata nel fondo, di cui al punto precedente, e di rimborsare il rimanente importo tramite un piano d'ammortamento a rate semestrali posticipate costanti di importo R.

Sapendo che l'individuo non può versare una rata superiore a 11.800 Euro, si determini il numero delle rate R da pagare ed il relativo importo.

Indichiamo con S il costo della casa \Rightarrow S = 105000 L'ammontare dell'anticipo è pari a \Rightarrow 80% * 67774.55 = 54219.64

La parte di costo finanziata con il mutuo, di cui dobbiamo calcolare il numero di versamenti, è:

$$S' = 105000 - 54219.55 = 50780.36$$

Calcoliamo dapprima il tasso su base semestrale corrispondente al tasso annuo del 4.5%:

$$i_{\frac{1}{2}} = (1+i)^{\frac{1}{2}} - 1 = (1+0.045)^{\frac{1}{2}} - 1 = 0.0223$$

Tenendo conto che l'individuo non può pagare una rata semestrale superiore a 11800 \in ($R_{\rm MAX}$), esprimiamo la somma finanziata con il mutuo nel modo seguente:

$$S' = R_{MAX} \cdot \frac{1 - \left(1 + i_{1/2}\right)^{-m}}{i_{1/2}}$$

Da cui, attraverso passaggi matematici, è possibile ottenere "m" come segue:

$$m = -\frac{\log \left[1 - \left(S' \cdot i_{\frac{1}{2}}\right) / R_{MAX}\right]}{\log \left(1 + i_{\frac{1}{2}}\right)} = -\frac{\log \left[1 - \left(50780.36 \cdot 0.0223\right) / 11800\right]}{\log \left(1 + 0.0223\right)} = 4.57$$

Calcoliamo il valore esatto della rata ponendo m = 5:

$$S' = R \cdot \frac{1 - \left(1 + i_{\frac{1}{2}}\right)^{-m}}{i_{\frac{1}{2}}} \qquad \Rightarrow \qquad R = \frac{50780.36}{\frac{1 - (1 + 0.0223)^{-5}}{0.0223}} = 10844.00$$

ESERCIZIO 2

Al tempo t_0 =0, in un mercato dove sono presenti i seguenti titoli:

- <u>Titolo A</u>: costo pari a 3450 Euro; pagamento all'epoca t₁=2 trimestri di un importo pari ad 1450 Euro; pagamento all'epoca t₂=3 semestri di un importo pari a 500 Euro; pagamento all'epoca t₃=4 semestri di un importo pari a 1750 Euro;
- <u>Titolo B</u>: TCF con scadenza 3 anni, valore facciale 4600 Euro, cedole semestrali e tasso nominale annuo del 5%.

Determinare:

1. il TIR del titolo A;

L' operazione finanziaria che descrive il titolo A è:

Verifichiamo che siano soddisfatte le condizioni di esistenza del T.I.R.:

- esiste una variazione di segno
- $P < f(1) \rightarrow 3450 < 3700$

I STEP:

Poniamo $f(v) = 1450 \cdot v + 500 \cdot v^3 + 1750 \cdot v^4$ e risolviamo tale equazione trovando due valori :

- v_1 tale che $f(v_1) < P$
- v_m tale che $f(v_m) > P$

$$v_1 = 0.97$$
 $f(v_1) = 3412.1 < 3450$
 $v_m = 0.98$ $f(v_m) = 3505.74 > 3450$

Sono quindi due valori accettabili.

II STEP:

Determiniamo il valore di v₂ grazie alla formula della retta passante per due punti:

$$v_2 = v_1 + \frac{P - f(v_1)}{f(v_m) - f(v_1)} \cdot (v_m - v_1)$$

Sostituendo i valori otteniamo $v_2 = 0.974$

III STEP:

Fissiamo un livello di errore accettabile $\varepsilon = 0.0001$ tale che $f(v_2+\varepsilon) > P$:

 $f(v_2+\varepsilon) = 3450.22 > P$ dunque il valore di v_2 è accettabile.

CALCOLIAMO ORA IL T.I.R.:

$$i^* = \frac{1}{v_2} - 1 = 0.02669$$
 espresso su base semestrale

2. il prezzo del titolo B affinché esso presenti lo stesso TIR del titolo A;

$$I = \frac{4600 \cdot 0.05}{2} = 115$$

$$P = 115 \cdot \frac{1 - (1 + 0.02669)^{-6}}{0.02669} + 4600 \cdot (1 + 0.02669)^{-6} = 4557.42$$

3. la scadenza media aritmetica dei due titoli.

$$SMA_A = \frac{1450 \cdot 1 + 500 \cdot 3 + 1750 \cdot 4}{1450 + 500 + 1750} = 2.69 \text{ semestri}$$

$$SMA_B = \frac{115 \cdot 1 + 115 \cdot 2 + 115 \cdot 3 + 115 \cdot 4 + 115 \cdot 5 + 115 \cdot 6 + 4600 \cdot 6}{\left(115 \cdot 6\right) + 4600} = 5.67 \text{ semestri}$$